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We study scale-free simple graphs with an exponent of the degree distribution � less than 2. Generically one
expects such extremely skewed networks—which occur very frequently in systems of virtually or logically
connected units—to have different properties than those of scale free networks with ��2: The number of links
grows faster than the number of nodes and they naturally posses the small world property, because the diameter
increases by the logarithm of the size of the network and the clustering coefficient is finite. We discuss a simple
prototype model of such networks, inspired by real world phenomena, which exhibits these properties and
allows for a detailed analytical investigation.
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There has been a recent surge of interest on the network
structure which underlie many real world phenomena �1�.
This is partly because the network’s topology plays a key
role in their understanding and partly because of the ubiquity
of few generic features such as the small world property �2�
and scale-free distribution of degrees �3�. The latter has been
observed for example in the World Wide Web �4�, Citation
network �5�, Protein Interaction Network �6�, film actors �2�,
and electronic circuits �7�. Indeed in each of these systems
nodes—web pages or actors—are linked—by hyperlinks or
collaboration in the same movie—to a number k of other
nodes, which is called the degree of the node �8�, and which
obeys a power law distribution P�k��k−�. In many cases
�Table I� the exponent � of such a distribution is larger than
two which its occurrence has been related to some interac-
tion mechanism—such as preferential attachment �3�—in
simplified models.

Scale-free networks with an exponent ��2 have received
less attention, despite their widespread appearance �Table I�,
in the peer-to-peer Gnutella network �9–11�, outgoing e-mail
network �12�, traffic in networks �13�, coauthorship network
in high energy physics �14� and in the network of depen-
dency among software packages �15,16�.

The aim of this paper is to show that simple graphs with
��2 have markedly different properties than simple graphs
with ��2. We shall do this first on the basis of general
arguments and then using a prototype model motivated by
the above mentioned real networks. This model reproduces
all the discussed generic properties. Furthermore we show
that its generalization to a weighted network exhibits non-
trivial statistical properties.

Generic properties—We focus on simple graphs with un-
correlated degree distribution. In the hidden variable en-
semble of Refs. �17,18�, a hidden variable qi from a distri-
bution P�q� is assigned to each node i of the network and
each couple of nodes is linked with a probability
pi,j = f�qi ,qj�. If the distribution of the hidden variables is
scale free P�q��q−� and the linking probability is in the

form pi,j =
qiqj

n�q� the resulting network is a simple uncorrelated

power-law network with exponent � and average degree

�k�= �q�. Moreover the degree of each node i is a Poisson
variable with average �ki�=qi �18�. In order for this ensemble
to be well defined the definition of a structural cutoff is
needed. In fact pi,j must indicate a probability and must be
pi,j �1. Thus the maximal allowed hidden variable qc�n�
would be qc�n�=�n�q� and consequently the maximal degree
of the network will scale with the system size n like
kc�n�	�n�k�.

Random uncorrelated networks with ��2 differ funda-
mentally in their topology from networks with ��2. Indeed,
��2 implies that the average degree increases with the sys-
tem size �k��n�, which means that the total number of links
grows faster than the number of nodes. This in turn means
that the cutoff kc�n� diverges with the system size in a non-
trivial manner. When ��2 the mean degree �k� is finite and,
hence, kc�n��n1/2. On the contrary, for ��2 the divergence
�k��n� implies that the structural cutoff scales with system
size n as kc�n��n�1+��/2. This and the explicit calculation of
�k�, leads to

� = �2 − ��/� . �1�

Correlated networks with a cutoff kc�n��n� which diverges
faster with n will exhibit an even faster divergence of �k�,
with �=��2−��.

Uncorrelated networks with such a broad distribution of
degrees are expected to have a high clustering coefficient.
The clustering coefficient is the ratio of number of loops of
size 3 �19,20� to the number of triples of connected nodes,
which is 
iki�ki−1�. So using Eq. �1� and the fact that
�k2��kc

3−�, we find a finite clustering coefficient

C �
�k�k − 1��2

�k�3n
� const. �2�

By contrast, the same argument implies a vanishing cluster-
ing coefficient C�n2−� for ��2.

Such a high clustering is consistent with the presence of a
high density core: Indeed a finite fraction of nodes are within
a distance log log n one from the other �21�. Still the diam-
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eter of the network is of order log n. Indeed there is a finite
number of nodes with degree ki=1 and 2 and these form
chains which connect to the core, whose length is exponen-
tially distributed. Hence, the longest chain has length
�max� log n, and it dominates the behavior of the diameter.
Similar arguments were also used in Ref. �21� for graphs
with ��2.

The model—Here we study in detail a prototype model of
networks with ��2 motivated by the real systems discussed
above. Our model is based on the idea of aggregation �22�
and it is very similar to one recently and independently in-
troduced in Refs. �23,24� in a different context, and analyzed
partly by Alava and Dorogovtsev �25�. We show that its sta-
tistical properties can be fully understood analytically and
that they reproduce successfully the properties observed in
real world networks with ��2. Furthermore, the model
shows that, in networks with ��2, the statistics of strength
of weighted networks can be highly nontrivial and very dif-
ferent from its counterpart in networks with ��2. Therefore,
we hope the model may serve as a starting point to under-
stand more complex cases as well as to address different
issues, such as the efficiency of search algorithms �26�, rout-
ing, traffic flow �13�, and transmission of infections on peer-
to-peer networks.

We consider a network of n nodes and, in each time step,
we perform the following two steps:

�1� Creation: We create a new node and connect it to a
randomly chosen node.

�2� Merging: We merge two randomly selected nodes. If
the two nodes were already connected, the corresponding
link is removed. Likewise, we remove multiple links with
common neighbors of the two nodes.

The first move is like creating a new software package,

e-mail address, or running a new instance of Gnutella. The
second move can be related to merging two packages or
abandoning one in the favor of another, merging two e-mail
accounts or shutting down a Gnutella client server and giving
its load to another one.

The model describes a stationary network with a fixed
number of nodes. If the second process is run at a smaller
rate than the first, the model describes a growing network
�see Ref. �25� where a similar extension has been analyzed�.
Actually, to perform our simulation, we started from a graph
with a couple of nodes, then we permitted it to grow by
allowing more creation than merging until it reached a given
size. After that we merged and created nodes sequentially to
keep the number of nodes fixed and we continued it until the
system reached the stationary state of the average degree. At
that point we started taking snapshots of the network with a
given interval that was enough to give us thousands of inde-
pendent structures. The interval between sampling was about
the same time as we had waited to reach the stationary state.
We repeated the process for different network sizes. Results
are reported in Fig. 1 and Table I compares the characteris-
tics of our networks to the one of real world cases. The
degree distribution P�k� follows a scaling function of the
form P�k�=k−�f�k /n�� with �	1.5 and �	0.67 where n
indicates the total number of nodes and k indicates the de-
gree of the nodes. Here f�x� is a scaling function with
f�x��const when x�1 and with f�x� decaying faster than
any power of x for x	1. In our model, since we have an
exponent ��2 also the total number of links m follows
a power law of the form m=n�+1 with the exponent
�	0.33�0, at odd with most studied models with ��2 for
which �=0 �3,19�. The exponents found above agree per-
fectly with the exponent relations �= �1+�� /2 and Eq. �1�.

TABLE I. Results of our simulation and its comparison to some empirical observations. In the case of
directed network the exponents is shown in the form of in/out. Here the total number of nodes, links, the
exponent, clustering coefficient, mean of shortest paths are represented by n, m, �, C, and l.

Network of n m � C l

Our simulation 1000 7696 3/2 0.45 3.69

Gnutellaa 1026 3752 1.4 3.6

Dependency of software packagesb 1439 1723 1.6/1.4 0.083 2.42

e-mailsc 59912 86300 1.8 4.95

Word webd 478773 1.8
107 1.5 0.69

Coauthorship in HEPe 56627 9796471 1.2 0.73 4.0

WWWf 2
108 2
109 2.1/2.7 16.8

Internetg 10697 31992 2.5 0.035 3.31

PINh 2115 2240 2.4 0.072 6.8

Citationi 783339 6716198 3.0

Actorsj 449913 25516482 2.3 0.20 3.48

Electronic circuitsk 24097 53248 3.0 0.010 11.05

aSee Ref. �11�.
bSee Ref. �19�.
cSee Ref. �12�.
dSee Ref. �30�.
eSee Ref. �14�.
fSee Ref. �4�.

gSee Ref. �31�.
hSee Ref. �6�.
iSee Ref. �5�.
jSee Ref. �2�.
kSee Ref. �7�.
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Moreover, we found that the networks produced by the
above dynamics have the small world properties: their diam-
eter grows as log n with system size whereas clustering co-
efficient does not decrease as n increases, in agreement with
Eq. �2�.

Weighted network—It is also interesting to consider a
model of weighted networks with the above dynamics. The
idea, for example, is that if the link between two software
packages i and j means that package i calls package j, it
might also be interesting to keep track of how many times i
calls j. Hence, we associate a weight to each link ij and
assume that it evolves according to the following rules:

• A fresh link that connects a new node to the network has
weight one.

• When merging two nodes i and j which are both linked
to the same node k, as before we only keep one link, and its
weight is the sum of the weights of the previous links.

In the previous example, when two software packages are
merged, the new package inherits all the calls to a third piece
of software of the merging packages. Likewise, when two
e-mail accounts are merged, we assume that the traffic of
e-mails to a third account will be the sum of the traffic origi-
nating from the two accounts before the merge. This neglects
the presence of complementarities, which can be an impor-
tant issue in some cases, but is the most natural way to in-
troduce weights in the model. Weights allow us to define the
strength of a node in the usual way �27�, i.e., as the sum of
the weights of outgoing links.

The sum of all the weights increases when we add a node,
and it decreases when we merge two nodes that are con-
nected; therefore, one can expect it to reach the steady state.
This was confirmed by simulation, which also shows that the
distribution of the strengths decays as a power-law with an
exponent 1.5. This would be consistent with a linear relation
of strength versus degree, but Fig. 2 shows that such a rela-
tion only holds for small k and that most of the weight con-
centrates on high degree nodes.

Analytic approach—It is possible to shed light on these
findings and to calculate the exact value of the exponents for
this model, following similar arguments to those of Ref. �23�.

We can combine the two operations above in a single one
where we replace two nodes i and j by two nodes of which i
inherits all the links �incoming and outgoing� of both nodes
and j looses all links, and acquires a new link to a randomly
chosen new node �28�. If ki� and kj� are the degrees of the two
nodes after the process, we have

ki� = ki + kj − mij − aij ,

kj� = 1 �3�

where aij =1 if the link ij exists and mij =
�ai�aj� is the
number of sites who were linked to both i and j. Given that
i and j are chosen at random, mij and aij can be regarded as
random variables. The probability that the link ij exists is
�aij�=kikj / �n�k��, likewise the average number of nodes con-
nected to both i and j is

�mij� = 

�

kik�

n�k�
k�kj

n�k�
= �kikj , �4�

where �= �k2� /n�k�2. Let us now introduce the generating
function for the degree distribution

��z� =
1

N


i=1

N

E�zki� .

In the stationary state, we can use Eq. �3� to derive the equa-
tion

��z� =
1

2
E�zki+kj−mij−aij−aji� +

1

2
z

=
1

2
�z + E�zki+kje�kikjh�z��1 + kikjh�z���� ,

where =1/ �n�k��, h�z�= �1−z� /z and the last equality
hinges upon the observation that mij is a Poisson variable
with mean given by Eq. �4� and that aij is a random bit with
�aij�=kikj. Now we observe that both � and →0 as

FIG. 1. Collapse plot of degree distribution for networks of
different size. The dashed line corresponds to a power law with
exponent −3/2.

FIG. 2. Main figure shows the average of weight of links that
are connected to nodes with a degree less than a given value of k0

and the inset shows the histogram of strength of nodes. The legends
show the number of nodes in each case.
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n→�, consequently ��z� can be expanded in a power
series in � and . The leading term ��==0� yields
2��z�=�2�z�+z, i.e.,

��z� = 1 − �1 − z =
1

2��1/2�
k=1

�
��k − 1/2�

k!
zk. �5�

Therefore, for n→�, we find P�k�= 1
2��1/2�

��k−1/2�

k! �k−� with

�=3/2. The exponent relations derived earlier can then be
used to conclude that �=2/3 and �=1/3. This conclusion is
also supported by a direct calculation of the next terms in the
small � expansion. These finite n corrections introduce a
finite cutoff kc�n� in the distribution, but leads to cumber-
some formulas which we will not detail here. A further way
to compute � comes from observing that the average of Eq.
�3� in the stationary state yields 1= �k2� /n+ �k� /n, i.e.,
�k2��n. This combined with the relation �kq��n��q−�+1� im-
plies �=2/3. This shows that the exponent relations
�= �1+�� /2 and Eq. �1�—which are valid for random
graphs—can be explicitly verified in this model.

A simple argument also allows us to understand the sta-
tistics of weights. Indeed at each time step, a new link with
weight w=1 is added. At the same time, the weight of the
link between nodes i and j, if present, is removed. In the
stationary state, then we expect that the probability �k� /n of
an existing link to be chosen, times its average weight �w�
must be equal to one. Hence, �w��n / �k��n2/3. Unlike for
the degree distribution, we do not expect a cutoff in the
distribution of weights �29�. Assuming that P�w��w−−1

with �1, we know that �w���n�k��1/−1. Combining this
with �w��n2/3 we find that =2/3, in perfect agreement
with numerical simulations. Concerning the node’s strength
si, in order to explain the behavior of Fig. 2 it is crucial to
observe that nodes with ki�kc will have links with weights
of order one. Indeed, merge events in which nodes i and
j share some of their neighbors are rare if �mij�
= �ki / �k���kj / �k���1, ki�kc, or if kj �kc. We therefore ex-
pect that links belonging to nodes with ki�kc have weights
of order one, i.e., that si�ki. For ki�kc instead the additive
process of weights on links to shared neighbors becomes

relevant, eventually leading to a very broad distribution of
weights on such nodes. This is a rather nonstandard situation
compared to that of most weighted networks with ��2 �27�.

Conclusions—We have discussed the properties of com-
plex scale free networks with degree distribution exponent
��2, which characterizes many real systems. We have
shown that these properties are reproduced by a simple pro-
totype model motivated by such real systems. A key charac-
teristic of this class of networks is that their average degree
grow with the system size, which suggests that making a link
is inexpensive. This is indeed the case for networks of soft-
ware packages. In fact it is costly to make a package, but it is
costless to use an already existing package. Interestingly, a
peculiarity of the model is that it involves global moves. This
requires some sort of global information exchange mecha-
nisms, that is not part of the network itself, that allows nodes
to interact globally. In the example of software packages, this
information exchange happens among programmers, in fact
they are responsible for the evolution of the system and they
do not exchange information only through the system. While
both properties are likely to hold only for open source pack-
ages, they might not apply to commercial software, which
might be expensive to link to. A further problem is that sta-
tistical information on commercial software dependencies is
not available. These two features also characterize other net-
works: for example, in Gnutella each node is a computer. But
each link is only a logical connection between two comput-
ers and does not require any additional hardware. In the case
of Gnutella network there are web caches that store the in-
formation of nodes and share them with other nodes but
these caches are not considered as a part of the network
itself. It is tempting to conjecture that the relation between
these two properties and networks with exponent ��2 is
generic. This, applied to coauthorship network, suggests that
global interaction and information diffusion plays an essen-
tial role in establishing a dense collaboration network.
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